
A Simplified Approach

to

Data Structures
Prof.(Dr.)Vishal Goyal, Professor, Punjabi University Patiala

Dr. Lalit Goyal, Associate Professor, DAV College, Jalandhar

Mr. Pawan Kumar, Assistant Professor, DAV College, Bhatinda

Shroff Publications and Distributors

Edition 2014

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

2

CONTENTS INCLUDED

Definition of Queue

Introduction of queue

Application of queue

Operations on queue

Insertion of element

Deletion of element

Memory representation of Queue

Array representation of Queue

Linked representation of Queue

3

INTRODUCTION OF QUEUE

. Queue is a linear data structure.

. Queue has two ends Front and Rear.

. Element can be added at Rear of the queue and

the element can be removed from the Front end

of the queue.

. The elements of a queue are processed in the same

order as they were added into the queue.

4

INTRODUCTION OF QUEUE(CONT…)

. Queues are also known as FIFO (First In Order First

Out) list or FCFS (First Come First Serve basis) list .

. Queue contrasts with STACKS,which are last in first

out(lifo).

5

People waiting in queue

Example:

. Queues occur in real life a lot:

1. Queues at checkout

2. Queues in banks

. In software systems:

1. Queue of requests at a web servers

6

7

APPLICATIONS OF QUEUE

1. Direct applications:

. Waiting lists, bureaucracy

. Access to shared resources (e.g., printer)

. Multiprogramming

2. Indirect applications:

. Auxiliary data structure for algorithms

. Component of other data structures

There are two operations on the queue:-

1. Insertion

2. Deletion

OPERATIONS ON QUEUE

8

INSERTION OPERATION

. Insertion operation refers to addition of element in

Queue.

. Insertion operation processed only when there is space in

Queue, otherwise it gives overflow ,it indicates to the
user there is no space in queue.

. Insertion of element in Queue is done from the Rear end.

. After N insertions ,the Rear element of the Queue will

occupy QUEUE[N] or in other words; eventually the
Queue will occupy the last part of the array.

9

INSERTION OPERATION(Cont…)

Consider a list of four elements (a, b, c, d) where

a is the front element and d is rear element.

a b c d

Front Rear

A queue with Four Elements

10

INSERTION OPERATION(Cont…)

New element e will be inserted at the rear end,

here, after the element d as shown in figure below:-

a b c d

Front Rear

e

11

DELETION OPERATION

. Deletion operation refers to removal of an element

from the queue.

. Deletion operation is processed only when there is

element present in the Queue,otherwise it gives

underflow,which tells the user that there is no

element present in Queue.

. The Deletion of element is done from the front of

Queue.

12

DELETION OPERATION(Cont…)

Only element at the front end can be deleted from

the queue. Here, the element a will be deleted

from the queue as shown:

Deleting an element from the queue

a b c d

Front

e

Rear

13

DELETION OPERATION(Cont…)

Another element that can be deleted from

the queue is b as shown below:

Deleting another element from the queue

b c d

Front

e

Rear

14

MEMORY REPRESENTATION OF QUEUE

Memory Representation

Using Array
Using Linked

List

Circular
Queue

representation

15

ARRAY REPRESENTATION OF QUEUE

• The elements of the Queue must be of
same type (homogenous).

• Maximum size of the queue must be
defined before implementing it as array is
static data structure.

• Queue grows and shrinks over time but an
array has constant size.

• First In First Out (FIFO) order must be maintained

using two variables Front and Rear

16

INSERTION:

INSERTION means the addition of

element in Queue.Whenever an element is added

to the Queue,the value of REAR is increased by

1;this can be implemented by the assignment

REAR=RAER+1

ARRAY REPRESENTATION OF QUEUE (Cont..)

1 2 3 4 5 6 7

a b c d e

Queue having 5 elements

Front Rear

17

1 2 3 4 5 6 7

a b c d

Front Rear

Inserting an element g at index 7 in the queue

1 2 3 4 5 6 7

a b c d e

Inserting an element f at index 6 in the queue

Front Rear

e

18

g

f

f

ARRAY REPRESENTATION OF QUEUE(Cont…)

DELETION:
The only element at the front of the Queue can be

removed and variable Front of the queue will be

incremented by one.After deletion of element value of

FRONT is increased by 1;This can be implemented by the

assignment

REAR=REAR+1

a

1 2 3 4 5 6 7

b c d

Rear

Deletion of an element from the queue

g

Front

e

19

f

CIRCULAR REPRESENTATION OF QUEUE

In the above mentioned queue, the front positions

start vacating during the deletion process. To make

full use of space, two cases arise,

. Queue contrasts with STACKS,which are last in first

out(lifo).Shift all the elements in the left after each

deletion position.

. Use circular array to implement queue termed as

circular Queue.

. Shifting elements in the front positions is not efficient

in terms of time, so the circular queue is very

efficient option.
20

. An array in the form of circle is used.

. After the last index, there it the turn of first index

making it circular.

CIRCULAR QUEUE

Q[n-1]

Q[n]

Q[1]

Q[2]]

Q[3]

A CIRCULAR ARRAY OF SIZE n

21

OPERATIONS ON CIRCULAR QUEUE

1. INSERTION

2. DELETION

22

INSERTION IN CIRCULAR QUEUE

• Before inserting an element, the overflow

condition must be checked.

• If last indexed position is occupied, element will

be inserted at the first index.

23

ALGORITHM INSERTION IN CIRCULAR QUEUE(Cont…)

Insertion of an element ‘Data’ into the circular queue. The size of the Queue is ‘n’ i.e.
‘n’ number of elements can be accommodated in the Queue. Here, lower index is

taken as ‘1’ and upper index is taken as ‘n’.

Step 1: If FRONT = 1 and REAR = n Then

Print “Queue is full, Overflow Condition”

Exit

[End If]

Step 2 : If FRONT = REAR+ 1 Then

Print “Queue is full, Overflow Condition”

Exit

[End If]

6

24

FRONT=1 REAR=6

1

2

3

4

5 a

b

c

d

e

f

1

2

3

4

5

6

e

f

g

h

c

d

FRONT

REAR

FRONT

REAR

FRONT=REAR+1

ALGORITHM INSERTION IN CIRCULAR QUEUE(Cont…)

Step 3: If REAR = NULL Then

Set FRONT = 1 and REAR = 1

If REAR = n Then

Set REAR = 1

Else

Set REAR = REAR + 1

[End If]

Step 4: Set Q[REAR] = DATA

Step 5: Exit

25

1

2

3

4

5

6

FRONT=0 REAR=0
1

2

3

4

5

6

c

d

e

FRONT

f

REAR

REAR=1

1

2

3

4

5

6

d

e

f

g REAR

FRONT

REAR=REAR+1

DELETION IN CIRCULAR QUEUE

. Before deleting an element, the underflow

condition must be checked.

. If Front is reached at last index, after deletion

Front will refer to the first index.

26

ALGORITHM OF DELETION IN CIRCULAR QUEUE

Deleting an Element from the Queue. The size of the Queue is ‘n’ i.e. ‘n’ number
of elements can be accommodated in the Queue. Here, lower index is taken as
‘1’ and upper index is taken as ‘n’.

Step 1: If FRONT = NULL Then
Print: “Queue is empty, Underflow Condition”
Exit

[End If

Step 2: Set DATA = Q[FRONT]

Step 3: If FRONT = REAR Then
Set FRONT = NULL and REAR = NULL

27

4

1

2

3

4

5

6

FRONT=0 REAR=0

1

2

3

4

5

6

c
FRONT
REAR

FRONT=REAR

ALGORITHM OF DELETION IN CIRCULAR QUEUE(Cont….)

28

Else If FRONT = n Then
Set FRONT = 1

Else
Set FRONT = FRONT+ 1

[End If]

Step 4: Exit

1

2

3

4

5

6

f

g

h

FRONT

REAR

FRONT=6

1

2

3

4

5

6

g

h

i

FRONT

REAR

FRONT=1

. The elements of the queue may be of different type (hetrogenous).

. size of the queue may be changed at run time (Dynamic data structure).

. First In First Out (FIFO) order must be maintained using two pointer

variables Front and Rear.

. Holds the address of the first node and the Rear holds the address of the

last node of the linked list.

LINKED LIST REPRESENTATION OF QUEUE

Front Rear

A Queue Maintained using a Linked List

a b c d Null

FRONT REAR

The insertion of a new element e in the above shown queue

can be shown as in figure below:

Front Rear

This insertion of an element ‘e’ in the queue

a b c d

e Null

INSERTION IN QUEUE USING LINKED LIST

Rear ---> Next = New

Rear = New

30

FRONT REAR

ALGORITHM OF INSERTION IN QUEUE USING LINKED LIST

This algorithm inserts a given element ‘Data’ in a queue which is implemented
using a linked list ‘Q’ having variable FRONT which contains the address of 1st

element of the queue and variable Rear which contains the address of last
element of the queue.

Step 1: If FREE = NULL Then

Print: “No Free Space Available for Insertion”

Exit
[End If]

Step 2: Allocate memory to node NEW

Set NEW = FREE and FREE = FREE ->NEXT

Step 3: Set NEW-> INFO = DATA and NEW ->NEXT = NULL

Step 4: If REAR = NULL Then

Set FRONT = NEW and REAR = NEW

Else

Set REAR ->NEXT = NEW and REAR = NEW

[End If]

Step 5: Exit
31

. Deletion of node pointed by Front variable can be done.

. After deletion, Front will point to 2nd node.

DELETION IN QUEUE USING LINKED LIST

32

Front Rear

Deletion of an element from the Queue

a b c d Null

Front = Front -> Next

FRONT REAR

ALGORITHM OF DELETION IN QUEUE USING LINKED LIST

This algorithm removes an element from a queue which is maintained using linked list
‘Q’ having variable Front which contains the address of 1st element of the queue
and variable Rear which contains the address of least element of the queue.

Step 1: If FRONT = NULL Then

Print “ Queue is Empty”

Exit

[End If]

Step 2: Set DATA = FRONT-> INFO, TEMP = FRONT

Step 3: If FRONT = REAR Then

Set FRONT = NULL and REAR = NULL

Else

Set FRONT= FRONT-> Next

[End If]

Step 5: Deallocate memory taken by node TEMP

Set TEMP-> NEXT = FREE, FREE= TEMP

Step 6: Exit

33

