
Book
A Simplified Approach

to

Data Structures
Prof.(Dr.)Vishal Goyal, Professor, Punjabi University Patiala

Dr. Lalit Goyal, Associate Professor, DAV College, Jalandhar

Mr. Pawan Kumar, Assistant Professor, DAV College, Bhatinda

Shroff Publications and Distributors

Edition 2014

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Department of Computer Science, Punjabi University Patiala

CIRCULAR LINKED LIST

AND

DOUBLY LIST

• Circular Linked list

• Two-Way Linked List

Contents for Today’s Lecture

3.4 Circular Linked List

Linked List: A Linked List refers to a linear collection of data

elements in which linear order is not given by their physical

placement n memory (as in case of array). In linked list, the data

elements are managed by collection of nodes, where each node

contains link or pointer which points to the next node in the list. The

beginning f the linked list is maintained by a special pointer variable

which contains the address of the first node in the list. The link part of

the last node contains a special value called Null which shows the end

of the list.

Representation of Data using Linked list

Amit

Begin

Karan Rajesh Naveen Sonia Null

3.4 Circular Linked List(continued)

A Circular Linked List is a list in which last node points

back to the first node instead of containing the Null pointer

in the next part of the last node. The circular linked list can

be shown diagrammatically

A CIRCULAR LINKED LIST

5 10 12 97

Begin

All the operations which can be performed on ordinary

singular linked list can easily be performed on circular linked

list with the following changes:
•Looking for the end of the linked list -In the case of one way singular

linked list, the next part of the last node will contain Null address but

in the case of circular linked list, the next part of the last node consist

of address of the first node i.e. Begin. Thus for reaching at the end of

the circular linked list, we will compare the address of the first node

i.e. Begin with address stored in Next part of each node. If both the

addresses come out to be same, then we have reached at the end of the

circular list.

•When a new node is to be inserted at the end of the circular linked

list, it’s next part will contain the address of the first node instead of

null as is in the case of one-way singular linked list.

3.4 Circular Linked List(continued)

3.4.1.Traversal in Circular Linked List

The traversal of circular linked list having list pointer variable

Begin and a pointer variable Pointer to traverse the linked list

from begin to end.

Algorithm : Traverses a circular linked list with pointer

variable ‘Begin’

Step1: If Begin =Null Then

Print: “Circular linked list is empty”

Exit

[End If]

Step2: Process Begin→ Info

3.4.1.Traversal in Circular Linked List(continued)

Step3: Set Pointer = Begin→ Next

Step4: Repeat steps 5 and 6 while Pointer ≠ Begin

Step5: Process Pointer→ Info

Step6: Set Pointer = Pointer→ Next

[End Loop]

Step7: Exit

In this case, the New node is inserted as the first node and the

next part of the last node is changed and now it points to the

newly inserted node as shown below in figure:

New

Insertion of a New Node at the Beginning of a Circular

Linked List

3.4.2.Insertion at the Beginning of Circular

Linked List

Begin

7 5 10 12 9

3.4.2.Insertion at the Beginning of Circular

Linked List(continued)

Algorithm: Insertion of an element ‘Data’ at the Beginning of

the Circular Linked List

Step1: If Free=Null Then

Print: “No free space available”

Exit

[End If]

Step2: Set New= Free and Free=Free→ Next

Step3: Set New→Info=Data

Step4: If Begin=Null Then

Set Begin=New

Set New→ Next=Begin

Exit

[End If]

Step5: Set Pointer=Begin

Step6: Repeat while Pointer→Next ≠ Begin

Set Pointer=Pointer→ Next

[End Loop]

3.4.2.Insertion at the Beginning of Circular

Linked List(continued)

Step7: Set New→ Next=Begin

Step8: Set Begin=New

Step9: Set Pointer→ Next=Begin

Step11: Exit

3.4.2.Insertion at the Beginning of Circular

Linked List(continued)

In the process of inserting an element at the end of the circular linked list,

the address stored in the Next part of the last node and next part of New node

need to be changed as shown below:

New

Insertion of a Node ‘New’ at the End of the circular linked list

3.4.3. Insertion at the End of the Circular

Linked List

Begin

7 5 10 12 9

9

3.4.3. Insertion at the End of the Circular

Linked List(continued)

Algorithm: Insertion of an element ‘Item’ at the end of the

circular linked list

Step1: If Free=Null Then

Print: “No Free space available for Insertion”

Exit

[End If]

Step2: Allocate memory to node New

Set New =Free and Free=Free→ Next

Step3: Set New→ Info=Item

Step4: If Begin=Null Then

Set Begin=New and New → Next=Begin

Exit

[End If]

Step5: Set Pointer=Begin

Step6: Repeat while Pointer→ Next ≠ Begin

Set Pointer=Pointer→ Next

[End Loop]

Step7: Set Pointer→ Next=New and New → Next=Begin

Step8: Exit

3.4.3. Insertion at the End of the Circular

Linked List(continued)

3.4.4. Applications of Circular Linked List

Circular linked list can be used for:

• Implementing a time sharing problem of the operating system:

The operating system must maintain a list of executing processes

and must alternately allow each process to use a slice of CPU

time, one process at a time and there should be no Null Pointer

unless there is no process requesting CPU time.

In Two-Way Linked List, we traverse the list in both the directions i.e.

forward direction (from beginning to end) and in backward direction (from

end to beginning). The Two-Way Linked List is also known as Doubly

Linked List. In Two-Way Linked List, each node is divided into three parts:

Pre, Info, Next. The structure of a node used in Two-Way Linked List is as

shown below:

↑ ↑ ↑

Pre Info Next

Structure of a Node used in a Two-Way Linked List

Pre part contains the address of the preceding node

Info part contains the element

Next part contains the address of the Next node.

3.5 Two-Way Linked List (Doubly Linked List)

Here in Two-Way Linked List, two list Pointer variables i.e. Begin and End

are used which contains the address of the first node and last node of the

Linked List respectively . Two-Way Linked List can be shown

diagrammatically as shown:

↑ ↑ ↑

Pre Info Next

A Two-Way Linked List

The Pre part of the first node of a Two-Way Linked List will contain Null

as there is no node preceding the first node and the Next part of last node will

contain Null as there is no node following the last node.

3.5 Two-Way Linked List (Doubly Linked List)

(continued)

Begin

Null 10 12 8 Null7

End

3.5 Two-Way Linked List (Doubly Linked List)

(continued)

Operations performed on Two-Way Linked List:

•Traversing

•Searching

•Insertion

•Deletion

A Two-Way Linked List can be traversed in both the

directions:

•forward direction, the Pointer variable will be assigned with

the address stored in the Begin pointer variable and reach at

node whose Next part contains Null i.e. we reach at the end of

list.

• backward direction, the Pointer variable will be assigned

with the address stored in the End pointer variable and reach at

node whose Pre part contains Null i.e. we reach at the

beginning of the list. The variable Pointer keeps track of the

address of the current node.

3.5.1.Traversing a Two-Way Linked List

Algorithm: Traverses a two-way linked list starting

from the end of the list to the beginning
Step1: If End=Null Then

Print: “Linked List is empty”

Exit

[End If]

Step2: Set Pointer=End

Step3: Repeat while Pointer ≠ Null

Process Pointer → Info

Set Pointer=Pointer → Pre

[End Loop]

Step4: Exit

3.5.1.Traversing a Two-Way Linked List

(continued)

To find the location of a given linked list:

•traverse the list either from end or beginning

•keep comparing the element stored in each node with the

desired item

•if desired item is found then further traversing is stopped and

address of the node containing the desired element is

returned.

3.5.2. Searching in a Two-Way Linked List

Algorithm: To find the position of a given element ‘data’ in a

Two-Way Linked List by traversing it from end to beginning.

Step1: If End=Null Then

Print: “Linked List is empty”

Exit

[End If]

Step2: Set Pointer=End

3.5.2. Searching in a Two-Way Linked

List(continued)

Step3: Repeat while Pointer ≠ Null

If Pointer → Info=Data Then

Print: “Element Data is found at address”:Pointer

Exit

Else

Set Pointer=Pointer → Pre

[End If]

[End Loop]

Step4: Print: “Element Data is not found in the linked list”

Step5: Exit

3.5.2. Searching in a Two-Way Linked

List(continued)

3.5.3. Insertion of an element in a Two-

Way Linked List

Insertion can take place at various positions in a linked

list such as:

•at beginning

•at the end or after any particular node in a linked list: It

requires searching the location of the node after which

new node is to be inserted.

3.5.3.1. Inserting a New node at the

Beginning of a Two-Way Linked List

An element Data is to be inserted at the beginning of the doubly

linked list.

New

Insertion of a node at the Beginning in a Doubly linked List

Begin

Null 10 12 8 7 Null

Null Data

End

3.5.3.1. Inserting a New node at the Beginning

of a Two-Way Linked List(continued)

Algorithm: To insert a New node at the Beginning of

a Two-Way Linked List

Step1: If Free=Null Then

Print: “Free space not available”

Exit

[End If]

Step2: Allocate memory to node New

(Set New=Free and Free= Free → Next)

Step3: Set New → Pre=Null and New → Info=Data

3.5.3.1. Inserting a New node at the Beginning

of a Two-Way Linked List(continued)

Step4: If Begin=Null Then

Set New → Next=Null and End=New

Else

Set New → Next=Begin and Begin → Pre=New

[End If]

Step5: Set Begin=New

Step6: Exit

3.5.3.2. Inserting a New node after a particular

node in a Two-Way Linked List

Insertion after a particular node requires finding the location of the

node after which new node is to be inserted. After finding the desired

node, the New node can be inserted easily by changing few pointers

as shown:

New

Insertion of a node ‘New’ in the Linked List after a particular

element ‘Data’

Begin

Null 10 12 8 7 Null

Item

End

Successor=Pointer → Next

New → Next=Successor

Pointer → Next=New

New → Pre=Pointer

Successor →Pre=New

Algorithm: insert a New node ‘Item’ after a given

element ‘Data’ in the Two-Way Linked List

Step1: If Free=Null Then

Print: “Free space not available”

Exit

[End If]

Step2: Begin=Null Then

Print: “List is Empty, No insertion will take place”

Exit

[End If]

3.5.3.2. Inserting a New node after a particular

node in a Two-Way Linked List(continued)

3.5.3.2. Inserting a New node after a particular

node in a Two-Way Linked List(continued)

Step3: Set Pointer = Begin

Step4: Repeat while Pointer → Next ≠ Null

and Pointer→ Info ≠ Data

Pointer=Pointer → Next

[End Loop]

Step5: If Pointer → Next=Null and Pointer → Info ≠ Data

Print: “Item cannot be inserted as element Data is not present”

Exit

[End If]

3.5.3.2. Inserting a New node after a particular

node in a Two-Way Linked List(continued)

Step6: Allocate memory to node New

(Set New=Free and Free=Free→ Next)

Set New→ Info=Item

Step7: If Pointer→ Next ≠ Null Then

Successor=Pointer→ Next

New→ Next=Successor

Pointer→ Next=New

New→ Pre=Pointer

Successor→ Pre=New

3.5.3.2. Inserting a New node after a particular

node in a Two-Way Linked List(continued)

Else

New→ Next=Null

New→ Pre=Pointer

Pointer→ Next=New

End=New

[End If]

Step8: Exit

3.5.4. Deleting a node with given Item from

2-Way linked List

For deleting a particular node:

•traverse the list either in forward or backward direction to

locate the node containing the element to be deleted

•if the desired node is found, it can be removed from the linked

list by changing few pointers as shown:

A Two-Way Linked List with 4 nodes

Begin

Null 5 8 7 Null9

End

3.5.4. Deleting a node with given Item from 2-

Way linked List(continued)

•if the desired node is not found and we reach at the end of a

list then an appropriate message is displayed.

CASE1: Suppose we want to delete an element 5, which is

contained in the first node of the list. Deletion will be

performed as shown in the figure below:

Successor

Deleting the 1st node of a Two-Way linked List

Begin

Null 5 8 7 Null9

End

Begin=Begin → Next

Begin → Pre=Null

3.5.4. Deleting a node with given Item from

2-Way linked List(continued)

CASE2: Suppose we want to delete an element 7, which is

contained in a node that lies between the first and last node of

the list then deletion will be performed as shown in the figure

below:

Previous Pointer Successor

Deleting a Node present between the first and the last node of a

Two-Way Linked List

Begin

Null 5 8 7 Null9

End

Previous →

Next=Successor

Successor→

Pre=Previous

3.5.4. Deleting a node with given Item from

2-Way linked List(continued)

CASE3: Now we will delete an element 9 which is encountered

in the node which is last node of the list as shown:

Deleting the last node from a Two-Way Linked List

Begin

Null 5 8 7 Null9

End

Previous →

Next=Null

End=Previous

Algorithm: Delete a node containing an element ‘Item’ from

a Two-Way Linked List

Step1: If Begin=Null Then

Print: “Linked List is already empty”

Exit

[End If]

Step2: If Begin→ Info=Item Then

Pos=Begin

Begin=Begin→ Next

Begin→ Pre=Null

3.5.4. Deleting a node with given Item from

2-Way linked List(continued)

3.5.4. Deleting a node with given Item

from 2-Way linked List(continued)

//Deallocate memory held by Pos

Pos→ Next=Free, Free=Pos

Exit

[End If]

Step3: Set Pointer=Begin→ Next

Step4: Repeat while Pointer→ Next ≠ Null

and Pointer→ Info ≠ Item

Set Pointer=Pointer→ Next

[End Loop]

3.5.4. Deleting a node with given Item from

2-Way linked List(continued)

Step5: If Pointer→ Next=Null and Pointer→ Info ≠ Item

Print: “ Item to be deleted not found”

Exit

[End If]

Step6: If Pointer→ Next=Null Then

//last node to be deleted

Set Previous=Pointer→ Pre

Set Previous→ Next=Null

Set End=Previous

