Chapter 3 Introduction to OLTP and OLAP

MINIOIOIO

INTINTI

Content of this presentation has been taken from Book

"Fundamentals of Business Analytics"
RN Prasad and Seema Acharya
Published by Wiley India Pvt. Ltd.

and it will always be the copyright of the authors of the book and publisher only.

OLTP Understanding

□Online Transaction Processing

□Consider a point-of-sale (POS) system in a supermarket store. You have picked a bar of chocolate and await your chance in the queue for getting it billed. The cashier scans the chocolate bar's bar code. Consequent to the scanning of the bar code, some activities take place in the background —

 \checkmark the database is accessed;

 \checkmark the price and product information is retrieved and displayed on the computer screen;

 \checkmark the cashier feeds in the quantity purchased;

 \checkmark the application then computes the total, generates the bill, and prints it. You pay the cash and leave.

The application has just added a record of your purchase in its database. This was an On-Line Transaction Processing (OLTP) system designed to support online transactions and query processing.

□ In other words, the POS of the supermarket store was an OLTP system.

OLTP Understanding

□OLTP systems refer to a class of systems that manage transaction-oriented applications.

These applications are mainly concerned with the entry, storage, and retrieval of data.

 \Box They are designed to cover most of the day-to-day operations of an organization such as purchasing, inventory, manufacturing, payroll, accounting, etc.

□OLTP systems are characterized by a large number of short on-line transactions such as INSERT (a record of final purchase by a customer was added to the database), UPDATE (the price of a product has been raised from Rs10 to Rs10.5), and DELETE (a product has gone out of demand and therefore the store removes it from the shelf as well as from its database).

□Almost all industries today (including airlines, mail-order, supermarkets, banking, etc.) use OLTP systems to record transactional data. The data captured by OLTP systems is usually stored in commercial relational databases. For example, the database of a supermarket store consists of the following tables to store the data about its transactions, products, employees, inventory supplies, Like Transactions, ProductMaster, EmployeeDetails, InventorySupplies,Suppliers, etc.

Online Transactional Processing (OLTP) Traditional database application is focused on Online Transactional Processing (OLTP),

 Short, simple queries and frequent updates involving a relatively small number of tuples e.g., recording sales at cash-registers, selling airline tickets.

OLTP

(ONLINE TRANSACTION PROCESSING SYSTEM)

- Used for transaction oriented applications
- Used by lower level employee
- Quick updates and retrievals
- Many users accessing the same data
- Users are not technical persons
- Response rate is very fast
- Single transaction (one application) at a time

OLTP

(ONLINE TRANSACTION PROCESSING SYSTEM)

- Stores routine data
- Follows client server model
- Applications
 - Banks
 - Retail stores
 - Airline reservation

OLTP (ONLINE TRANSACTION PROCESSING SYSTEM)

TRANSACTIONS

- Single event that changes something
- Different types of transactions
 - Customer orders
 - Receipts
 - Invoices
 - Payments
- Processing of transactions include storage and editing of data
 - When transaction is completed then the records of an organization are changed

TRANSACTIONS

TRANSACTIONS

Cash at register gone up

> Inventory of video game gone down

Ordering of new video game for the store

OLTP Segmentation

- They can be segmented into:
 - Real-time Transaction Processing
 - Batch Processing

Real-time Transaction processing

- Multiple users can fetch the information
- Very fast response rate
- Transactions processed immediately
- Everything is processed in real time

Batch Processing

- Where information is required in batch
- Offline access to information
- Presorting (sequence) is applied
- Takes time to process information

Characteristics of OLTP Model

- Online connectivity
 - LAN,WAN
- Availability
 - Available 24 hours a day
- Response rate
 - Rapid response rate
 - Load balancing by prioritizing the transactions

Characteristics of OLTP Model

• Cost

Cost of transactions is less

- Update facility
 - Less lock periods
 - Instant updates
 - Use the full potential of hardware and software

Limitations of Relational Models

- Create and maintain large number of tables for the voluminous data
- For new functionalities, new tables are added
- Unstructured data cannot be stored in relational databases
- Very difficult to manage the data with common denominator (keys)

Answer a Quick Question

According to your understanding, what are some of the queries that OLTP systems can process?

Queries that an OLTP System can Process

- Search for a particular customer's record.
- Retrieve the product description and unit price of a particular product.
- Filter all products with a unit price equal to or above Rs. 25.
- Filter all products supplied by a particular supplier.
- Search and display the record of a particular supplier.

Advantages and Challenges of an OLTP System

Advantages of an OLTP System

- Simplicity It is designed typically for use by clerks, cashiers, clients, etc.
- Efficiency It allows its users to read, write and delete data quickly.
- Fast query processing It responds to user actions immediately and also supports transaction processing on demand.

Challenges of an OLTP System

- Security An OLTP system requires concurrency control (locking) and recovery mechanisms (logging).
- OLTP system data content not suitable for decision making A typical OLTP system manages the current data within an enterprise/organization. This current data is far too detailed to be easily used for decision making.

The Queries that OLTP Cannot Answer

- The super market store is deciding on introducing a new product. The key questions they are debating are: "Which product should they introduce?" and "Should it be specific to a few customer segments?"
- The super market store is looking at offering some discount on their yearend sale. The questions here are: "How much discount should they offer?" and "Should it be different discounts for different customer segments?"
- The supermarket is looking at rewarding its most consistent salesperson. The question here is: "How to zero in on its most consistent salesperson (consistent on several parameters)? All the queries stated above have more to do with analysis than simple reporting"
- Ideally these queries are not meant to be solved by an OLTP system.

OLAP - Online Analytical Processing

- OLAP differs from traditional databases in the way data is conceptualized and stored.
- In OLAP data is held in the **dimensional form** rather than the relational form.
 - OLAP's life blood is **multi-dimensional data**.
- OLAP tools are based on the multi-dimensional data model. The multi-dimensional data model views data in the form of a data **cube**.
- Online Analytical Processing (OLAP) is a technology that is used to organize large business databases and support business intelligence.
 OLAP databases are divided into one or more cubes. The cubes are
- OLAP databases are divided into one or more cubes. The cubes are designed in such a way that creating and viewing reports become easy.
 - OLAP databases are divided into one or more cubes, and each cube is organized and designed by a cube administrator to fit the way that you retrieve and analyze data so that it is easier to create and use the PivotTable reports and PivotChart reports that you need.

OLAP (Online Analytical Processing)

- OLAP is a category of software that allows users to analyze information from multiple database systems at the same time. It is a technology that enables analysts to extract and view business data from different points of view
- Analysts frequently need to group, aggregate and join data. These operations in relational databases are resource intensive. With OLAP, data can be pre-calculated and pre-aggregated, making analysis faster.
- Provides multidimensional **view** of data
- Used for analysis of data
- Data can be viewed from different perspectives
- Determine why data appears the way it does
- **Drill down approach** is used to further dig down deep into the data

OLAP - Example

- ✤ Let us consider the data of a supermarket store, "AllGoods" store, for the year "2001".
- This data as captured by the OLTP system is under the following column headings: Section, Product-CategoryName, YearQuarter, and SalesAmount. We have a total of 32 records/rows.
- The Section column can have one value from amongst "Men", "Women", "Kid", and "Infant".
- The ProductCategory Name column can have either the value "Accessories" or the value "Clothing".
- The YearQuarter column can have one value from amongst "Q1", "Q2", "Q3", and "Q4".
- The SalesAmount column record the sales figures for each Section, ProductCategory Name, and Year Quarter.

OLAP - Example

Section	ProductCategoryName	YearQuarter	SalesAmount
Men	Accessories	Q1	3000.50
Men	Accessories	Q2	1000.50
Men	Accessories	Q3	3500.50
Men	Accessories	Q4	2556.50
Women	Accessories	QI	1250.50
Women	Accessories	Q2	1000.50
Women	Accessories	Q3	1500.50
Women	Accessories	Qá	1556.50
Kid	Accessories	Q1	1234.50
Kid	Accessories	Q2	5678.50
Kid	Accessories	Q3	1233.50
Kid	Accessories	Q4	1567.50
Infant	Accessories	Q1	1555.50
Infant	Accessories	Q2	2000.50

Characteristics of OLAP

- Multidimensional analysis
- Support for complex queries
- Advanced database support
 - Support large databases
 - Access different data sources
 - Access aggregated data and detailed data

Characteristics of OLAP

- Easy-to-use End-user interface
 - Easy to use graphical interfaces
 - Familiar interfaces with previous data analysis tools
- Client-Server Architecture
 - Provides flexibility
 - Can be used on different computers
 - More machines can be added

One Dimensional

Consider the table shown in the earlier slide - It displays "AllGoods" store's sales data by Section, which is one-dimensional.

Figure 3.4 shows data in two dimensions (horizontal and vertical), in OLAP it is considered to be one dimension as we are looking at the SalesAmount from one particular perspective, i.e. by Section.

Section	SalesAmount
afint	22124.00
Gd	34070.00
Men	18313.00
Women	16941.00

Table 3.6	One-dimensio	onal data	by YearQ	uarter
-----------	--------------	-----------	----------	--------

ProductCategoryName	SalesAmount
Q1	16924.00
Q2	22046.00
Q3	26663.00
Q4	25815.00

able 3.5 One-dimensional data by ProductCategoryName		
ProductCategoryName SalesAmount		
Accessories	33837.00	
Clothing	57611.00	

Table 3.5 presents the sales data of the "AllGoods" stores by ProductCategoryName. This data is again in one dimension as we are looking at the SalesAmount from one particular perspective, ie.ProductCategoryName.

Table 3.6 presents the "AllGoods" sales data by yet another dimension, i.e. YearQuarter. However, this data is yet another example of one-dimensional data as we are looking at the SalesAmount from one particular perspective, i.e. by YearQuarter.

Two Dimensional

One-dimensional data was easy. What if, the requirement was to view Company's data by calendar quarters and product categories? Here, two-dimensional data comes into play. The two-dimensional depiction of data allows one the liberty to think about dimensions as a kind of coordinate system.

Table 3.7 gives you a clear idea of the two-dimensional data. In this table, two dimensions (YearQuarters and ProductCategoryName) have been combined.

earQuarter	Accessories	Clothing	Sales Amount
21	7041	9883	16924
22	9680	12366	22046
<u>1</u> 3	9660	17003	26663
24	7456	18359	25815
otal	33837	57611	91448

In Table 3.7, data has been plotted along two dimensions as we can now look at the SalesAmount from two perspectives, i.e. by YearQuarter and ProductCategoryName. The calendar quarters have been listed along the vertical axis and the product categories have been listed across the horizontal axis. Each unique pair of values of these two dimensions corresponds to a single point of SalesAmount data. For example, the Accessories sales for Q2 add up to \$9680.00 whereas the Clothing sales for the same quarter total up to \$12366.00. Their sales figures correspond to a single point of SalesAmount data, i.e. \$22046.

Three Dimensional

What if the company's analyst wishes to view the data — all of it — along all the three dimensions (Year-Quarter, ProductCategoryName, and Section) and all on the same table at the same time? For this theanalyst needs a three-dimensional view of data as arranged in Table 3.8. In this table, one can now look atthe data by all the three dimensions/ perspectives, i.e. Section, ProductCategoryName, YearQuarter. If theanalyst wants to look for the section which recorded maximum Accessories sales in Q2, then by giving aquick glance to Table 3.8, he can conclude that it is the Kid section.

ProductCategoryName	YearQuarter	Men	Women	Kid	Infant	Tocal
Accessories	QI	3000.5	1250.5	1234.5	1555.5	7041
	Q2	1000.5	1000.5	5678.5	2000.5	9680
	Q3	3500.5	1500.5	1233.5	3425.5	9660
	Q4	2556.5	1556.5	1567.5	1775.5	7456
Clothing	QI	2000.5	4536.5	1000.5	2345.5	9883
	Q2	1230.5	2345.5	6789.5	2000.5	12366
	Q3	1456.5	3200.5	8889.5	3456.5	17003
	Q4	3567.5	1550.5	7676.5	5564.5	18359
Total		18313	16941	34070	22124	91448

Table 3.8 Three-dimensional data by Section, ProductCategoryName, and YearQuarter

Can we go beyond Three Dimensional?

 \checkmark Well, if the question is "Can you go beyond the third dimension?" the answer is YES!

 \checkmark If at all there is any constraint, it is because of the limits of your software. But if the question is "Should you go beyond the third dimension?" we will say it is entirely on what data has been captured by your operational transactional systems and what kind of queries you wish your OLAP system to respond to.

Now that we understand multi-dimensional data, it is time to look at the functionalities and characteristics of an OLAP system. OLAP systems are characterized by a low volume of transactions that involve very complex queries. Some typical applications of OLAP are: budgeting, sales forecasting, sales reporting, business process manage

 \checkmark Example: Assume a financial analyst reports that the sales by the company have gone up. The next question is "Which Section is most responsible for this increase?" The answer to this question is usually followed by a barrage of questions such as "Which store in this Section is most responsible for the increase?" or "Which particular product category or categories registered the maximum incréase?" The answers to these are provided by multidimensional analysis or OLAP;

Can we go beyond Three Dimensional?

Let us go back to our example of a company's ("AllGoods") sales data viewed along three dimensions:
 Section, ProductCategoryName, and YearQuarter.

✓ Given below are a set of queries, related to example, that a typical OLAP system is capable of responding to:

•What will be the future sales trend for "Accessories" in the "Kid's" Section?

•Given the customers buying pattern, will it be profitable to launch product "XYZ" in the "Kid's" Section?

• What impact will a 5% increase in the price of produces have on the customers?

Advantages of an OLAP System

- Multi-dimensional data representation.
- Consistency of information.
- "What if" analysis.
- Provides a single platform for all information and business needs planning, budgeting, forecasting, reporting and analysis.
- Fast and interactive ad hoc exploration.

Answer a Quick Question

According to your understanding, what are some of the queries that OLAP systems can process?

OLTP vs. OLAP

	OLTP	OLAP
	Online Transaction Processing	Online Analytical Processing
Focus	Data in	Data out
Source of data	Operational/Transactional Data	Data extracted from various
		operational data sources,
		transformed and loaded into the
		data warehouse
Purpose of data	Manage (control and execute) basic	Assists in planning, budgeting,
	business tasks	forecasting and decision making
Data contents	Current data. Far too detailed – not	Historical data. Has support for
	suitable for decision making	summarization and aggregation.
		Stores and manages data at
		various levels of granularity,
		thereby suitable for decision
		making
Inserts and updates	Very frequent updates and inserts	Periodic updates to refresh the
		data warehouse
Queries	Simple queries, often returning fewer	Often complex queries involving
	records	aggregations
Processing speed	Usually returns fast	Queries usually take a long time
		(several hours) to execute and
		return
Access	Field level access	Typically aggregated access to
		data of business interest

OLTP vs. OLAP

	OLTP	OLAP	
	Online Transaction Processing	Online Analytical Processing	
Database Design	Typically normalized tables. OLTP	Typically de-normalized tables; uses	
	system adopts ER (Entity Relationship)	star or snowflake schema	
	model		
Operations	Read/Write	Mostly read	
Backup and Recovery	Regular backups of operational data are	Instead of regular backups, data	
	mandatory. Requires concurrency control	warehouse is refreshed periodically	
	(locking) and recovery mechanisms	using data from operational data	
	(logging)	sources	
Joins	Many	Few	
Derived data and aggregates	Rare	Common	
Data Structures	Complex	Multi-dimensional	
Few Sample Queries	 Search & locate student(s) Print student scores 	• Which courses have productivity	
	 Filler students above 90% marks 	How much training is needed on	
		future technologies for non	
		linear growth in BI2	
		When equal ten investing in DSS	
		• Why consider investing in DSS experience lab?	
Sr.No.	Data Warehouse (OLAP)	Operational Database (OLTP)	
--------	---	---	
1	Involves historical processing of information.	Involves day-to-day processing.	
2	OLAP systems are used by knowledge workers such as executives, managers and analysts.	OLTP systems are used by clerks, DBAs, or database professionals.	
3	Useful in analyzing the business.	Useful in running the business.	
4	It focuses on Information out.	It focuses on Data in.	
5	Based on Star Schema, Snowflake, Schema and Fact Constellation Schema.	Based on Entity Relationship Model.	
7	Provides summarized and consolidated data.	Provides primitive and highly detailed data.	
8	Provides summarized and multidimensional view of data.	Provides detailed and flat relational view of data.	
9	Number or users is in hundreds.	Number of users is in thousands.	
10	Number of records accessed is in millions.	Number of records accessed is in tens.	
11	Database size is from 100 GB to 1 TB	Database size is from 100 MB to 1 GB.	
12	Highly flexible.	Provides high performance.	

OLAP Cube

Data Warehouse Models and OLAP Operations

Data Warehouse Architecture

Decision Support

- Information technology to help the knowledge worker (executive, manager, analyst) make faster & better decisions
 - "What were the sales volumes by region and product category for the last year?"
 - "How did the share price of comp. manufacturers correlate with quarterly profits over the past 10 years?"
 - "Which orders should we fill to maximize revenues?"
- On-line analytical processing (OLAP) is an element of decision support systems (DSS)

Three-Tier Decision Support Systems

- Warehouse database server
 - Almost always a relational DBMS, rarely flat files
- OLAP servers
 - Relational OLAP (ROLAP): extended relational DBMS that maps operations on multidimensional data to standard relational operators
 - Multidimensional OLAP (MOLAP): special-purpose server that directly implements multidimensional data and operations
- Clients
 - Query and reporting tools
 - Analysis tools
 - Data mining tools

The Complete Decision Support System

Data Warehouse vs. Data Marts

- Enterprise warehouse: collects all information about subjects (customers, products, sales, assets, personnel) that span the entire organization
 - Requires extensive business modeling (may take years to design and build)
- *Data Marts*: Departmental subsets that focus on selected subjects
 - Marketing data mart: customer, product, sales
 - Faster roll out, but complex integration in the long run
- Virtual warehouse: views over operational dbs
 - Materialize sel. summary views for efficient query processing
 - Easy to build but require excess capability on operat. db servers

Approaches to OLAP Servers

- Relational DBMS as Warehouse Servers
- Two possibilities for OLAP servers
- (1) Relational OLAP (ROLAP)
 - Relational and specialized relational DBMS to store and manage warehouse data
 - OLAP middleware to support missing pieces
- (2) Multidimensional OLAP (MOLAP)
 - Array-based storage structures
 - Direct access to array data structures

OLAP Server: Query Engine Requirements

- Aggregates (maintenance and querying)
 - Decide what to precompute and when
- Query language to support multidimensional operations
 - Standard SQL falls short
- Scalable query processing
 - Data intensive and data selective queries

OLAP for Decision Support

- OLAP = Online Analytical Processing
- Support (almost) ad-hoc querying for business analyst
- Think in terms of spreadsheets
 - View sales data by geography, time, or product
- Extend spreadsheet analysis model to work with warehouse data
 - Large data sets
 - Semantically enriched to understand business terms
 - Combine interactive queries with reporting functions
- Multidimensional view of data is the foundation of <u>OLAP</u>
 - Data model, operations, etc.

47

Warehouse Models & Operators

- Data Models
 - relations
 - stars & snowflakes
 - cubes
- Operators
 - slice & dice
 - roll-up, drill down
 - pivoting
 - other

Multi-Dimensional Data

- Measures numerical data being tracked
- Dimensions business parameters that define a transaction
- Example: Analyst may want to view <u>sales</u> data (measure) by <u>geography</u>, by <u>time</u>, and by <u>product</u> (dimensions)
- Dimensional modeling is a technique for structuring data around the business concepts
- ER models describe "entities" and "relationships"
- Dimensional models describe "measures" and "dimensions"

The Multi-Dimensional Model

"Sales by product line over the past six months" "Sales by store between 1990 and 1995"

Dimensional Modeling

- Dimensions are organized into hierarchies
 - E.g., Time dimension: days \rightarrow weeks \rightarrow quarters
 - E.g., Product dimension: product \rightarrow product line \rightarrow brand
- Dimensions have attributes

Dimension Hierarchies

ROLAP: Dimensional Modeling Using Relational DBMS

- Special schema design: star, snowflake
- Special indexes: bitmap, multi-table join
- Special tuning: maximize query throughput
- Proven technology (relational model, DBMS), tend to outperform specialized MDDB especially on large data sets
- Products

– IBM DB2, Oracle, Sybase IQ, RedBrick, Informix

MOLAP: Dimensional Modeling Using the Multi Dimensional Model

- MDDB: a special-purpose data model
- Facts stored in multi-dimensional arrays
- Dimensions used to index array
- Sometimes on top of relational DB
- Products
 - Pilot, Arbor Essbase, Gentia

Star Schema (in RDBMS)

Star Schema Example

Star Schema with Sample Data

Product _Code	Description	Color	Size
100	Sweater	Blue	40
110	Shoes	Brown	10 1/2
125	Gloves	Tan	M
	122.77.6895	1.33%	11.60

Period _Code	Year	Quarter	Month
001	1999	1	4
002	1999	1	5
003	1999	1	6
	States	08	1

		Å						
	Product _Code	t Period	d <u>Store</u> Code	Units _Sold	Dollars _Sold	Dollars _Cost		
Sales	110 125 100 110 100	002 003 001 002 003	\$1 \$2 \$1 \$3 \$2 \$2	30 50 40 40 30	1500 1000 1600 2000 1200	1200 600 1000 1200 750		
	Store _Code	Store _Name	City	Tele	phone	Manager		
Store	\$1 \$2 \$3	Jan's Bill's Ed's	San Antonic Portland Boulder	0 683-1 943-6 417-1	92-1400 81-2135 96-8037	Burgess Thomas Perry		

The "Classic" Star Schema

- A single fact table, with detail and summary data
- Fact table primary key has only one key column per dimension
- Each key is generated
- Each dimension is a single table, highly denormalized

Benefits: Easy to understand, easy to define hierarchies, reduces # of physical joins, low maintenance, very simple metadata

Drawbacks: Summary data in the fact table yields poorer performance for summary levels, huge dimension tables a problem

The "Classic" Star Schema

The biggest drawback: dimension tables must carry a *level* indicator for every record and every query must use it. In the example below, without the level constraint, keys for all stores in the NORTH region, including aggregates for region and district will be pulled from the fact table, resulting in error.

Example: Select A.STORE_KEY, A.PERIOD_KEY, A.dollars from Fact_Table A where A.STORE_KEY in (select STORE_KEY from Store_Dimension B where region = "North" and Level = 2)

Level is needed whenever aggregate: are stored with detai facts.

and etc..._{cs 336}

The "Level" Problem

- Level is a problem because because it causes potential for error. If the query builder, human or program, forgets about it, perfectly reasonable looking WRONG answers can occur.
- One alternative: the FACT CONSTELLATION model...

The "Fact Constellation" Schema

The "Fact Constellation" Schema

In the Fact Constellations, aggregate tables are created separately from the detail, therefor it is impossible to pick up, for example, Store detail when querying the District Fact Table.

Major Advantage: No need for the "Level" indicator in the dimension tables, since no aggregated data is stored with lower-level detail

Disadvantage: Dimension tables are still very large in some cases, which can slow performance; front-end must be able to detect existence of aggregate facts, which requires more extensive metadata

Another Alternative to "Level"

- Fact Constellation is a good alternative to the Star, but when dimensions have very high cardinality, the sub-selects in the dimension tables can be a source of delay.
- An alternative is to normalize the dimension tables by attribute level, with each smaller dimension table pointing to an appropriate aggregated fact table, the "Snowflake Schema"

. . .

The "Snowflake" Schema

Store Dimension

The "Snowflake" Schema

- No LEVEL in dimension tables
- Dimension tables are normalized by decomposing at the attribute level
- Each dimension table has one key for each level of the dimensionís hierarchy
- The lowest level key joins the dimension table to both the fact table and the lower level attribute table

How does it work? The best way is for the query to be built by understanding which summary levels exist, and finding the proper snowflaked attribute tables, constraining there for keys, then selecting from the fact table.

The "Snowflake" Schema

- Additional features: The original Store Dimension table, completely denormalized, is kept intact, since certain queries can benefit by its allencompassing content.
- In practice, start with a Star Schema and create the "snowflakes" with queries. This eliminates the need to create separate extracts for each table, and referential integrity is inherited from the dimension table.

Advantage: Best performance when queries involve aggregation

Disadvantage: Complicated maintenance and metadata, explosion in the numl of tables in the database CS 336 66

Advantages of ROLAP Dimensional Modeling

- Define complex, multi-dimensional data with simple model
- Reduces the number of joins a query has to process
- Allows the data warehouse to evolve with rel. low maintenance
- HOWEVER! Star schema and relational DBMS are not the magic solution
 - Query optimization is still problematic

Aggregates

Add up amounts for day 1 In SQL: SELECT sum(amt) FROM SALE WHERE date = 1

sale	prodld	storeld	date	amt
	p1	s1	1	12
	p2	s1	1	11
	p1	s3	1	50
	p2	s2	1	8
	p1	s1	2	44
	p1	s2	2	4

81

Aggregates

• Add up amounts by day

• In SQL: SELECT date, sum(amt) FROM SALE GROUP BY date

sale	prodld	storeld	date	amt	
	p1	s1	1	12	
	p2	s1	1	11	
	p1	s3	1	50	
	p2	s2	1	8	
	p1	s1	2	44	
	p1	s2	2	4	

ans	date	sum	
	1	81	
	2	48	

Another Example

Add up amounts by day, product In SQL: SELECT date, sum(amt) FROM SALE GROUP BY date, prodId

sale	prodld	storeld	date	amt						
	p1	s1	1	12		sale	prodld	date	amt	
	p2	s1	1	11			p1	1	62	
	p1	s3	1	50				p2	1	19
	p2	s2	1	8			n1	2	48	
	p1	s1	2	44	- -		P1	2	70	
	p1	s2	2	4						
rollup										
drill-down										

Aggregates

- Operators: sum, count, max, min, median, ave
- "Having" clause
- Using dimension hierarchy
 - average by region (within store)
 - maximum by month (within date)

ROLAP vs. MOLAP

- ROLAP: Relational On-Line Analytical Processing
- MOLAP:

Multi-Dimensional On-Line Analytical Processing
The MOLAP Cube

Fact table view:

Multi-dimensional cube:

dimensions = 2

3-D Cube

Fact table view:

Multi-dimensional cube:

sale	prodld	storeld	date	amt
	p1	s1	1	12
	p2	s1	1	11
	p1	s3	1	50
	p2	s2	1	8
	p1	s1	2	44
	p1	s2	2	4

dimensions = 3

Example

Cube Aggregation: Roll-up

Cube Operators for Roll-up

Extended Cube

Aggregation Using Hierarchies

	region A	region B
p1	56	54
p2	11	8

(store s1 in Region A; stores s2, s3 in Region B)

Slicing

	s1	s2	s3
p1	12		50
p2	11	8	

Slicing & Pivoting

	Sales			
	(\$ millions)			
	Products	Time		
		d 1	d2	
Store s1	Electronics	\$5.2		
	Toys	\$1.9		
	Clothing	\$2.3		
	Cosmetics	\$1.1		
Store s2	Electronics	\$8.9		
	Toys	\$0.75		
	Clothing	\$4.6		
	Cosmetics	\$1.5		

	Sales (\$ millions)			
	Products	d		
		Store s1	Store s2	
Store s1	Electronics	\$5.2	\$8.9	
	Toys	\$1.9	\$0.75	
	Clothing	\$2.3	\$4.6	
	Cosmetics	\$1.1	\$1.5	
Store s2	Electronics			
	Toys			
	Clothing			

Summary of Operations

- Aggregation (roll-up)
 - aggregate (summarize) data to the next higher dimension element
 - e.g., total sales by city, year \rightarrow total sales by region, year
- Navigation to detailed data (drill-down)
- Selection (slice) defines a subcube
 - e.g., sales where city ='Gainesville' and date = '1/15/90'
- Calculation and ranking
 - e.g., top 3% of cities by average income
- Visualization operations (e.g., Pivot)
- Time functions
 - e.g., time average

Query & Analysis Tools

- Query Building
- **Report Writers** (comparisons, growth, graphs,...)
- Spreadsheet Systems
- Web Interfaces
- Data Mining

MOLAP, ROLAP, HOLAP

• MOLAP

– Multidimensional OLAP

• ROLAP

- Relational OLAP

• HOLAP

– Hybrid OLAP

MOLAP

- Uses multidimensional approach to solve a problem
- Directly stores the information in cubes
- Used in SSAS (SQL Server Analysis Services)

ROLAP

- Relational databases are used to store the data
- Translates OLAP queries to appropriate SQL statements
- Data created by OLTP is directly used

Do it Exercise

Study the Data models for OLTP and OLAP systems Hint: ER modeling, Star and Snowflake Schema

The raw data

Car_sales table

Receipt_no	make	color	size	date	price
0001	Toyota	white	small	01/01/01	20000
0002	Nissan	red	Medium	01/01/01	25000
0003	Holden	silver	Medium	01/02/01	299000

For analysis, raw data often needs to be summarized

OLAP:example

Example: find what kinds of cars are popular?

sales(make, color, size, num_sold) (slightly summarized data)

where **make** can be Toyota, Nissan, Holden, Ford etc

colors are white, red, silver

size can be small, medium, large.

- Attributes such as **num_sold** are called *measure attributes*, since they can be used to measure some value, and can be aggregated.
- Attributes like make, color, size are called *dimension attributes*, since they define the dimensions on which measure attributes are viewed.

Data that can be modeled as dimension attributes and measure attributes are called *multi-dimensional data*.

Dimension Hierarchies

- For each dimension, the set of values can be organized in a hierarchy.
 - E.g., assuming the sales table includes time and location dimension

The hierarchies represent different levels of details for attributes.

Cross Tabs and Data Cubes

- OLAP systems allow analyst to view different summaries of the data.
 - The following table can be derived from sales(make, color, size, num_sold)

Cross-tab or pivot table

	WHITE	RED	SILVER	TOTAL
TOYOTA	8	35	10	53
NISSAN	20	10	5	35
HOLDEN	14	7	28	49
FORD	20	2	5	27
TOTAL	62	54	48	164

Relational representation

make	color	num_sold
Toyota	white	8
Toyota	red	35
Toyota	silver	10
Toyota	all	53
Nissan	white	20
Nissan	red	10
Nissan	silver	5
Nissan	all	35
Holden	white	14
Holden	red	7
Holden	silver	28
Holden	all	49
Ford	white	20
Ford	red	2
Ford	silver	5
Ford	all	27
all	white	62
all	red	54
all	silver	48
all	all	164

Data Cubes

The generalization of a cross tab, which is 2-dimensional, to n dimensions can be visualized as a n-dimensional cube, called the data cube.

MOLAP vs ROLAP

- OLAP systems can use multi-dimensional array to store data cubes, called multidimensional OLAP systems (MOLAP).
- Alternatively, they can stored data as relations in relational databases, called relational OLAP systems (ROLAP).

ROLAP

- The main relation, which relates dimensions to measures, is called the *fact table*.
 - e.g., sales(prod_id, date, shop_id, num_sold)
 - > Very large, accumulation of facts such as sales
- Each dimension can have additional attributes and an associated *dimensional* table.
 - E.g., product(prod_id, price, color) prod_id is a foreign key of sales shops(shop_id, location, manager)
 - > Dimension data are smaller, generally static

The Star Schema

- In a ROLAP system, relations are often stored with star schemas
- A star schema consists of the fact table and one or more dimension tables.
 Dimension tables are usually not normalized, why?
- A typical query often involves a join of the fact table and the dimension tables.

The Star Schema

Dimension tables are not in 3NF

Fact constellation

A set of fact tables that share some dimension tables

OLAP Queries

- A common operation is to aggregate a measure over one or more dimensions, e.g.,
 - find total/average sales for a product.
 - find total sales in each city/state/month etc
 - find top 2 products by total sales
- Roll-up: moving from finer granularity to coarser granularity by means of aggregation.
 - > E.g., given total sales for each city, find total sales for each state.
- Drill-down: The inverse of roll-up
- Pivoting: aggregate on selected dimensions
- Slicing and dicing:
 - E.g., from the data cube find the cross-tab on Model and Color for medium cars. The cross-tab can be viewed as a slice of the data cube.

Query Processing Issues

- Expensive aggregations are common
- Pre-compute all aggregates? Maybe infeasible!
- Materialized views can help.
 - Which views to materialize?
 - given a query and some materialized views, can we use the views to answer the query? How?
 - How frequently should we refresh the views to make them consistent with the underlying tables?
- What indexes should one use?

SQL:1999 Extended Aggregations*

Example 1

Select make, color, size, sum(number) from sales

group by cube(make, color, size)

Calculates 8 groupings:

(make, color, size), (make, color), (make, size),, ().

Example 2

Select make, color, sum(number) from sales

Group by rollup(make, color, size)

Calculates 4 groupings:

(make, color, size), (make, color), (make), ().

Examples in Oracle: Rollup

ROLLUP(channels.channel_desc, calendar_month_desc, countries.country_iso_code);

Oracle Rollup Example

CHANNEL_DESC	CALENDAR	CO	SALES\$
Internet	2000-09	GB	16,569
Internet	2000-09	US	124,224
Internet	2000-09		140,793
Internet	2000-10	GB	14,539
Internet	2000-10	US	137,054
Internet	2000-10		151,593
Internet			292,387
Direct Sales	2000-09	GB	85,223
Direct Sales	2000-09	US	638,201
Direct Sales	2000-09		723,424
Direct Sales	2000-10	GB	91,925
Direct Sales	2000-10	US	682,297
Direct Sales	2000-10		774,222
Direct Sales			1,497,646

1,790,032

OLTP and OLAP

Should OLAP be Performed Directly on Operational Databases?

- OLTP systems support multiple concurrent transactions. Therefore the OLTP systems have support for concurrency control (locking) and recovery mechanisms (logging).
- An OLAP system on the other hand requires mostly a read only access to data records for summarization and aggregation. If concurrency control and recovery mechanisms are applied for such OLAP operations, it will severely impact the throughput of an OLAP system.

OLAP Operations on Multi-dimensional Data

- Slice
- Dice
- Roll-up
- Drill down
- Drill through
- Drill across
- Pivot/Rotate

Do It Exercise

Hands on practice on the various OLAP operations on multi-dimensional data.

Hint: Provide the participants with a sample data sheet (Excel sheet) and ask them to demonstrate their understanding of the various OLAP operations on multi-dimensional data.

Data Warehouse

- A repository of information gathered from multiple sources, stored under a unified schema, usually at a single site.
- Data may be augmented with additional attributes, such as timestamp, and summary information.
- Data are stored for a long time, permitting access to historical data.
- Interactive response times expected for complex queries; ad-hoc updates uncommon.
Building Data Warehouse

Issues:

- Semantic integration: When getting data from multiple sources, must eliminate mismatches, e.g., different currencies.
- Heterogeneous sources: must access data from a variety of source formats.
- Load, refresh, purge: Must load data, periodically refresh it, and purge too old or useless data
- Metadata management: Must keep track of source, loading time, etc.

Elements of data warehouse

- Data Replication Manager
 - copying & distribution of data across databases
 - data that needs to be copied, source/destination, frequency, data transforms
 - *refresh* copy entire source, propagate changes only
 - > all external data is transformed & cleansed before adding to warehouse
- Informational Database
 - database that stores data copied from multiple sources by data replication manager
- Information Directory
 - metadata manager collects metadata from databases on network
- EIS/DSS tools
 - SQL based query tools
 - some vendors use extended SQL

Query/Reporting tools

- Formulate queries without (extended) SQL or other languages
- Result displayed as table, graph, report,
- Spreadsheet systems
- Web interfaces
- Vendor-specific tools
 - > Oracle Discoverer:
 - http://www.oracle.com/tools/disc/index.html

Column stores

- A recently proposed data storage method that allows more efficient aggregation queries in data warehouses
- stores data as columns rather than as rows.
- See http://en.wikipedia.org/wiki/Columnoriented_DBMS.

OLAP in BI

Answer a Quick Question

Will using BI/Analytics in conjunction with ERP systems prove advantageous to the enterprise? Why?

Leveraging ERP Data Using Analytics

ERP provides several business benefits, here we enumerate the top three:

- 1. Consistency and reliability of data across the various units of the organization.
- 2. Streamlining the transactional process.
- 3. A few basic reports to serve the operational (day-to-day) needs.

In short ERP systems are adept at capturing, storing and moving the data across the various units smoothly.

It is however inept at serving the analytical and reporting needs of the organization.